
 

Signal and image processing is an important branch of 
science and engineering. It mainly focuses on measuring, 
recognizing, analyzing, filtering, enhancing, compressing 
and synthesizing the signals and images. It deals with all 
types of linear and nonlinear systems. To extract the intrinsic 
signals and images from measurements and observations, 
denoising has always been adopted as the initial stage before 
pattern classification, modeling, control and optimization 
could be conducted. Both wavelet transform and component 
analysis techniques are broadly used for signal and image 
denoising. In addition artificial intelligence schemes such as 
fuzzy logic and neural networks are also frequently involved 
in noise suppression. To enhance the quality of denoising for 
highly nonlinear systems, integration of 2 popular schemes is 
proposed to achieve efficient denoising and to be adaptable 
to more general data types without excessive computation 
complexity needed [1-4].  

Discrete wavelet transform (DWT) conducts the wavelet 
transform via a discrete set of wavelet scales and translations 
on a basis of defined rules. It actually decomposes the signal 
into an orthogonal set of wavelets. DWT decomposes a 
signal to equal length of wavelet coefficient spectra to the 
number of the signal data or possible shorter length, so no 
information redundancy occurs and thus it does have many 
applications. A watermarking algorithm uses wavelet multi-
resolution structure to obtain frequency components, both 
wavelet and spatial transformation have been conducted [5]. 
(2D) DWT has been presented for digital compression and 
reconstruction of fingerprint images to manifest the unique 
biometric patterns based on reoccurring data. Its feasibility 
has been testified via information metric analysis such as 
discrete entropy and discrete energy [6]. DWT is also applied 
to the fractal-based denoising in the wavelet domain. 
Prediction of the fractal code for a noiseless image can be 
made in terms of noisy observations. The fractal-based 

denoising scheme results in better estimations of source 
images [7]. For the blurry aerial images, denoising is indeed 
necessary for better target detection and pattern recognition. 
Both (2D) DWT and wavelet packets could be used with 
satisfactory results together with soft thresholding. Metrics 
such as mutual information have also been applied to make 
comparisons between two techniques [8]. Being a noval 
scheme, dual watermarking based on both DWT and chaotic 
schemes is proposed to protect information security against 
various malicious attacks. It is shown that information 
integrity has been well preserved in both the frequency 
domain and spatial domain via quantitative analysis [9].  

On the other hand, component analysis is another good 
means to process signals and images. It has the potential to 
be applied to robotic controlled remote surgery. The real-
time biomedical sample analysis with a Raman spectrometer 
mounted on the end-effector of the medical robot has been 
designed, which is used to differentiate among diverse 
animal samples of liver, lung, kidney and glands. Principal 
component analysis (PCA) instead can be used for in-vivo 
sample differentiation. Based on Raman frequency shift 
information between incident light and scattered light, the 
resonant frequency of the biomedical sample could be 
uniquely located. When PCA is combined with other 
approach such as fuzzy filtering for denoising and clustering 
analysis, a systematic approach is provided for biomedical 
sample characterization [10-11]. The extension of PC allows 
for extracting a few relevant features from high-dimension 
fuzzy data. The linear neural networks are exploited for 
information compression without the procedure of explicit 
matrix diagonalization. It is demonstrated that this scheme 
provides concise representations of lengthy fuzzy data from 
experiment data [12]. Component analysis can be applied to 
biometric identification as well. Sensing information can be 
digitized into data matrices. It can be indicated by plaintexts 
consisting of inherent signatures. Both PCA and Independent 
Component Analysis (ICA) could be introduced for decision 
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making [13]. For moving object detection, it also contains 
unique signatures. The underlying factors can be revealed via 
ICA based synthesis. This method has been evaluated using 
metrics well defined in the information theory [14]. The 
component analysis can also be expanded to other relevant 
fields. In the complex flocculation mechanism study, kernel 
based nonlinear component analysis (NCA) has been 
employed, which offers more flexibility to solve large 
dimensional nonlinear multivariate problems. It can also be 
easily extended to other high-dimensional nonlinear cases. 
The impact of salinity on the synthetic floc strength has been 
examined via NCA. It is observed that salinity turns out to be 
a dominating factor for mechanical behaviors of flocs [15]. 

Seeing the crucial roles of DWT and NCA on a wide 
variety of denoising problems, no matter on linear or 
nonlinear systems. Integration of DWT and NCA has been 
proposed for more general nonlinear denoising issues with 
higher adaptability across several domains in this study. 
 

Discrete Wavelet Transform (DWT) is introduced for 
denoising and in general it is applied at multiple levels. The 
decomposition at each level produces the scaling function 
and wavelet function in 1D DWT, together with both the 
corresponding approximation and detail coefficients. Each 
function is reduced to the half size after decomposition. For 
the multiple-level DWT, the approximation component is 
subject to further decomposition at each level while all the 
detail components are kept for further analysis. Information 
loss between two adjacent levels of approximations gives 
rise to the detail component. The simple 1D Haar wavelet 
transform is formulated as below. The expansion function 
sets consist of integer translations and binary scaling of the 
real squared scaling function φ(x) that is integrable. Each 
component of the set {φn, k(x)} is expressed as (1), for all 
pairs of integers n and k in the Hilbert space L2(R). The 
scaling function φ(x) in fact changes with n. 

φn,k(x)= 2n/2 φ(2nx - k)    (1) 
The wavelet functions ψ(x) is also defined with integer 

translations and binary scaling. It spans difference between 
any two adjacent scaling subspaces. Individual component 
of wavelet function set {ψj,k(x)} is expressed as (2). 

ψn,k(x)= 2n/2 ψ(2nx - k)     (2) 
for all pairs of integers n and k in the Hilbert space L2(R).  
The wavelet function ψ (x) also changes with n. 
 

The scaling function φ(x) and wavelet function ψ(x) can 
be self-defined. For instance, the scaling function φ(x) has 
been originally defined as a unit height and unit width 
function. Meanwhile when the scale n is fixed, it follows 
that (3) and (4) hold. 

φ(x)= φ(2x) + φ(2x-1)    (3) 
ψ(x)= φ(2x) - φ(2x-1)    (4) 

 
The wavelet series expansion of f(x) is formulated based 

on both the scaling function φ(x) and wavelet function ψ(x). 

0

0 n, k n, kf(x) (k) ( )  (k) ψ (x)n n

k n n k

x  




    (5) 

where n0 represents the specified starting scale. αn0(k) is the 
approximation coefficient and βn0(k) is the detail coefficient, 
which are defined as the inner products of the function f(x) 
itself with the 1D scaling function and 1D wavelet function, 
respectively.  It will be applied in this study. 
 

For a number of short discrete-time sequences containing 
noises, it is straightforward to apply component analysis. For 
a finite sufficient long discrete-time sequences (size: LN; 
N>>L) corrupted by noises, interferences and disturbances 
instead, it is also reasonable to be viewed as multiple (L) 
observations of the short sequences of equal size (N), so a set 
of column vectors can be produced. In this way, to make it 
simple, component analysis could be actually applied to the 
typical sufficient long discrete-time sequence without a set of 
long sequences being needed.  

For DWT denoising at the level M in context, wavelet 
decomposition is performed from the 1st to Mth level on the 
scaling functions. Then the approximation coefficient at the 
level M and all the wavelet coefficients from the 1st to Mth 
level can be collected. Meanwhile it has been applied to all L 
observations simultaneously. Now a 3D array of N×L× 
(M+1) is constructed  with (M+1) numbers of N×L matrices. 
Each one is used to estimate the covariance matrix based on 
the proposed nonlinear component analysis.  

Compared with the principal component analysis, kernel 
based nonlinear component analysis is more adaptable to the 
complex problems with highly nonlinear behaviors. The 
nonlinear kernel can be applied to approximate all the 
covariance matrices instead when the data is not linearly 
separable at all. Typical nonlinear kernels include Gaussian 
kernel, Cauchy kernel, Laplace exponential kernel, and so 
on. Both exponential and non-exponential kernel functions 
are frequently used (Fig. 1).   
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Fig. 1. Typical Exponential and Non-Exponential Kernel Functions 

 
The popular functions of Gaussian kernel, Cauchy kernel, 

and Laplace exponential kernel can be formulated as (6).  
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2. 1D Discrete Wavelet Transform (DWT) 

3. Nonlinear Component Analysis 
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where sigma σ in (6) is the square root of the variance. In 
Gaussian kernel kG, σ can be adjusted so that a tradeoff 
between nonlinearity and sensitivity can be made. It is an 
exponential kernel that measures the closeness. The Cauchy 
kernel instead produces broad influence and sensitivity over 
the high dimensional space. The Laplace kernel is often 
used to reduce sensitivity against variations of the parameter 
σ. Gaussian kernel is commonly adopted, whose results via 
numerical simulations will be shown in following sessions.  
 

For the nonlinear kernel approach with the centered data 
(

1
( ) 0N

ii
x


  ), i=1, 2, …, N, the diagonalization is 

implemented on the resulting covariance matrix COVNCA in 
(7), (M+1) times in total. Φ defines a nonlinear function, 
such as the three kernel functions defined above. 

1
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NCA i ii
COV x x

N 
  

         
(7) 

If the centered data is unavailable initially, Standard Normal 
Variate (SNV) can be easily employed to normalize the data 
to zero mean with the standard deviation scaled to one. Now 
(7) results in the problem of eigenvalues and eigenvectors.   
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where  acts as the eigenvalue and V is the corresponding 
eigenvector of COVNCA. The eigenvector corresponding to 
the largest eigenvalue is known as the most significant 
principal component or first principal component (PC1), 
showing the direction of maximal variability. Φ(xi) is the 
centered data and COVNCA is a positive definite matrix. An 
alternative approach to compute the nonlinear principal 
component could be Singular Value Decomposition (SVD). 
The results from two approaches will be identical to each 
other. The nonlinear kernel function is easily defined as an 
inner product in the feature space being denoted as (9). The 
eigen-space is generated in the span of Φ(xi), Φ(x2), Φ(x3), 
…, and Φ(xN).    

i j Φ(x ),Φ(x )i jk(x ,x ) =         (9) 

 

With respect to the approximation coefficient at the level 
M and all the detail coefficients from the 1st to Mth level, 
NCA will be applied to each of L corrupted finite sequences 
of size N for denoising, It leads to another covariance matrix 
of equal size N×L. In particular, all principal components 
for the approximation coefficient and M detail coefficients 
can be computed using NCA, while those eigenvalues less 
than one would be directly ignored. Then principal 
components from low frequency smooth approximation will 
be kept for reconstruction via inverse transform. Principal 
components from the coarse detail instead essentially 
represent insignificant high frequency components and 
noises, which are subject to suppressing. Via integration of 
DWT and NCA, all qualified principal components of 

details at levels 1 through M are computed and kept. Hard 
thresholding will be applied to these principal components 
of the detail coefficients. Specifically two simple schemes 
are implemented. Firstly, hard thresholding is performed on 
most significant principal components (PC1) at levels 1 to 
M on details exclusively. Secondly, hard thresholding is 
applied to all those principal components greater than one at 
levels 1 to M on details. 
Now all detail coefficients at levels 1 though M have been 
thresholded for noise reduction purposes. For principal 
components of approximation coefficient at the level M 
instead, leave it alone for reconstruction via inverse 
transform as long as the corresponding eigenvalues are 
greater than one. The next step turns out to be the wavelet 
reconstruction starting from the level M back to level 1. The 
centered data after denoising is reached. After conducting 
reverse process of standard normal variate and then 
combining the L short sequences, a similar finite sufficient 
long sequence to the original signal after denoising has been 
formulated. Without loss of generality, the proposed scheme 
will be tested multiple times in terms of noise reduction for 
diverse nonlinear issues in the spatial domain, frequency 
domain and time domain, respectively, so as to show its 
feasibility and broad adaptability.  
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Fig. 2. Denoising in Spatial Domain Problem 

 
To analyze complex mechanisms involved in flocculation 

and coagulation processes with highly nonlinear behaviors, 
the impact of salinity on the synthetic floc strength has been 
examined. The scale of salinity in the synthetic flocs can be 
adjusted to different scales such as 5 PSU, 10 PSU and 30 
PSU, respectively. Because the flocculation processes of 
suspended clay particles are performed in the stirring bath, it 
is not guaranteed at all that the data collected will be 
accurate. Via data acquisition, however, nonlinear dynamic 
relationships between load and deformation could be 

4. Numerical Simulations 

5. Case Study 1: Spatial Domain Problem 
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captured for each case. It provides 3 sets (5 PSU, 10 PSU 
and 30 PSU) of source data in the spatial domain. Based on 
the proposed scheme, DWT and NCA are applied for 
denosing with satisfied results. For each set of data in Fig. 2, 
comparisons are made among source data and two individual 
types of the denoised signals. The wavelet decomposition is 
performed up to the Mth level. Those PCs whose eigenvalues 
are less than one should be omitted for both approximation 
and detail coefficients. In addition detail coefficients are also 
subject to hard thresholdng on either PC1 or all PCs across 
all M levels prior to reconstruction. From the simulation 
results, denoising is well implemented on both cases. But 
hard thresholdng on all PCs will produce better denoising 
results than that on PC1 exclusively. 

 

The wavelets also have the local property in the time 
domain and frequency domain from data points of view. 
Raman spectroscopy can be applied to biomedical analysis in 
a non-destructive manner. The frequency domain Raman 
spectra, however, are relatively weak signals whose features 
are easily corrupted by noises. Thus nonlinear denoising 
should be introduced beforehand. In this study, the source 
Raman spectra from samples of Mice glands, liver and lung 
are collected for signal denoising. Once again, for each set of 
Raman spectra in Fig. 3, comparisons are made among 
source data and two individual types of denoised data. From 
the simulation results, denoising is well implemented on both 
cases of nonlinear denoising via integration of DWT and 
NCA. However, hard thresholdng on all relevant PCs of 
detail coefficients will produce better denoising results than 
that on PC1 of the detail coefficients exclusively. Similar 
results are reached as those cases in the spatial domain. 
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Fig. 3. Denoising in Frequency Domain Problem 

 

The same wavelet analysis approach can also be expanded 
to denoising in the time domain problems. Modeling and 
prediction in the stock market are both tough problems in 
finance and no existing theory could solve all the tough 
problems. The fluctuation of data and nonlinear behaviors 
occur all the time. It is also a discrete time domain problem 
varying daily or monthly. Denoising could be employed as 
well in order to simplify the model for better prediction. In 
Fig. 3, the data draft of Dow Jones Industrial Average Stock 
Market Index over 100 years is collected, stating from 
1043.67 in January 1921 to 30606.48 in December 2020. 
Similar to both the spatial domain and frequency domain 
examples, integration of DWT and NCA schemes proposed 
has been demonstrated to be a powerful denoising tool. 
Meanwhile, when the resulting PCs for approximation stay 
the same, better denoising results can be obtained if hard 
thresholdng is performed on all relevant PCs of details than 
on the most significant PC1 of details themselves. It has 
shown clearly that the proposed integration scheme of DWT 
and NCA could be applied to the general types of nonlinear 
denoising problems.  
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Fig. 4. Denoising in Time Domain Problem 

 
 

 Integration of DWT and NCA has been presented for 
discrete time signal denoising in this research. The nonlinear 
nature of the noise reduction approach allows for potential 
applications in numerous different problems across diverse 
disciplines. Without loss of generality, case studies have 
been conducted accordingly, covering mechanical nonlinear 
behavior analysis of the salinity impact on the flocculation 
process in the spatial domain, Raman spectral analysis for 
sample differentiation in the frequency domain, and Dow 
Jones Industrial Average Stock Market Index analysis and 
potential prediction in the time domain. Outcomes of these 
case studies have indicated the effectiveness of the proposed 

6. Case Study 2: Frequency 
Domain Problem  

7. Case Study 3: Time Domain Problem 

Conclusions 
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nonlinear denoising approach using both DWT and NCA. It 
has the potential to be applied to diverse cases of noise 
reduction problems, even under highly nonlinear behaviors. 
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